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1. INTRODUCTION

Booton [1] and Kazakov [2] introduced the stochastic linearization method nearly
simultaneously in 1953 and 1954 respectively. In nearly half a century since its inception,
many review articles have been written, and its description appears in specialized
monographs, that include the treatment of non-linear random vibration. In these two
works, Booton [1]and Kazakov [2] replace the non-linear dynamic system by the linear
system that is equivalent to the original, non-linear one is some probabilistic sense. The
criterion that was suggested is that of the minimum mean-square deviation between the
original non-linear expression of the force u (X), where X is the displacement, and the linear
counterpart k

eq
X, where k

eq
is the spring constant of the equivalent linear system. The aim is

formulated as follows: given the probabilistic properties of the excitation F (t), "nd the
mean-square values of the displacement E (X2) and the velocity E (XQ 2 ). Booton [1] and
Kazakov [2], as well as numerous other investigators (in our estimate over 400)*utilize the
following formula for the equivalent spring constant:

k(1)
eq
"E[Xu(X)]/E(X2 ), (1)

however, Kazakov's [2] classical work contains another criterion too. It demands that the
mean-square values of the non-linear force E[ f 2(X)] and its replacement E[(k

eq
X)2] be

equal:

E[u2(X)]"E[(k
eq

X)2], (2)

resulting in the following expression of k
eq

:

k(2)
eq
"JE[u2(X)]/E(X2). (3)

Unfortunately, investigators almost uniformly do not report this classic result of Kazakov's
[2] work. This reminds us of Mark Twain's [3] de"nition of the classical work: &&A classic is
something that everybody wants to have but nobody wants to read.'' In this study, a short
summary is given of some recent work on stochastic linearization criteria. In total, 81
criteria will be discussed, along with the possible implications and signi"cance of such
a multiplicity.
0022-460X/00/430550#10 $35.00/0 ( 2000 Academic Press
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2. BASIC EQUATIONS

Consider a single-degree-of-freedom system described by the following non-linear
di!erential equation:

mXG#u(X)#t (XQ )"F(t), (4)

where u (X) is the non-linear restoring force, while t (XQ ) is the non-linear damping force,
m denotes the mass and F(t) is the excitation with speci"ed probabilistic properties. We will
utilize the method of moments as suggested by Yamada [4}6] and Fujita [7] for the
deterministic problems (see also reference [8]). As Finlayson [8] notes, &&For the ordinary
di!erential equations governing2phenomenon the weighting functions are x, x2, x3,2.
Thus, successively higher moments of the residual are required to be zero.''We replace the
non-linear restoring force u (x) by the linear equivalent k

eq
X. Since these two quantities are

unequal, unless the restoring force is linear, we form the de"ciency, or error

eu(X)"u (X)!k
eq

X. (5)

We demand that the de"ciency be probabilistically orthogonal to x, i.e.,

Seu(X), XT"0, (6)

where the angle brackets denote the inner product

S f
1
(X), f

2
(X)T"E[ f

1
(X) f

2
(X)]"P

=

~=

f
1
(x) f

2
(x)p

x
(x) dx, (7)

where p
x
(x) is the probability density function of x. Equation (6) leads to the requirement

Seu(X), XT"Su(X)!k
eq

X, XT"0 (8)

from which we "nd k
eq

:

k
eq
"

Su(X), XT
SX, XT

. (9)

Bearing in mind the de"nition of the inner product in equation (7), we conclude that
equation (9) coincides with equation (1); thus k

eq
in Eq. (8) is k(1)

eq
:

Seu(X), XT"Su (X)!k(1)
eq

X, XT"0. (10)

The expression for c
eq

can be obtained by forming the de"ciency or error et(XQ ), between the
damping force t(XQ ) and its linear replacement c

eq
XQ :

et (XQ )"t(XQ )!c
eq

XQ . (11)

According to the method of moments [4}8], we require the following inner product to
vanish:

Set (XQ ), XQ T"0 (12)

or

St(XQ )!c
eq

XQ , XQ T"St(XQ ), XQ T!c
eq

SXQ , XQ T"0. (13)
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thus,

c
eq
"St(XQ ), XQ T/SXQ , XQ T"c(1)

eq
(14)

which coincides with the expression used by the pioneers of the stochastic linearization.
Thus, equations (1) and (10) can be derived without utilization of the so-called minimum

mean-square di!erence criterion, as it was done in the literature. The derivation via the
method of moments is much simpler than the explanation utilized in the literature.
The demand that the mean-square values of the non-linear and linear dissipation forces to
be equal, i.e., that

E[t2(XQ )]"E[(c
eq

XQ )2] (15)

yields the following expressions for c
eq

:

c(2)
eq
"JE[t2(XQ )]/E(XQ 2). (16)

3. RE-DERIVATION OF ENERGY CRITERIA

Wang and Zhang [9], Elishako! and Zhang [10], Zhang et al. [11] (see also the recent
study of Murayov et al. [12]) utilized a potential energy of the system as a parameter with
respect to which the linearization should be performed. This criterion is derived here in
much simpler manner as follows. The potential energy of deformation stored in the
non-linear spring equals

P (X)"P
X

0

u(x) dx, (17)

the potential energy of the associated equivalent linear spring is

P
eq

(X)"k
eq

X2/2. (18)

We form the de"ciency with respect to energy e
p

as follows:

e
p
(X)"P(X)!k

eq
X2/2 (19)

and demand it to be orthogonal to X2 :

Se
p
(X), X2T"0 (20)

or

SP(X), X2T!k
eq

SX2/2, X2T"0, (21)

leading to the following expression for k
eq
"k(3)

eq
:

k(3)
eq
"2E[X2P(X)]/E(X4). (22)

Another criterion based on the potential energy is somewhat analogous to that by
Kazakov [2]. It demands that the mean-square value of the potential energy of the original
system E[P2(X)] has to coincide with its counterpart in the linear system, namely

E[P2(X)]"E[(k
eq

X2/2)2]. (23)
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The attendant expression for the equivalent spring is

k(4)
eq
"2JE[P2(X)]/E(X4). (24)

Elishako! and Bert [13] recently proposed a criterion based on the concept of the
complementary energy. Namely, the complementary energy C(X)"Xu(X)!P (X) is used
as the basis for linearization.

The de"ciency between the complementary energy C(X) of the original non-linear system
and that of the linear system k

eq
X2/2,

e
c
(X)"C(X)!k

eq
X2/2, (25)

is being "rst formed. Then it is made orthogonal to X2 to yield

k(5)
eq
"2E[X2C(X)]/E(X2). (26)

An additional criterion in terms of the complementary energy can be suggested, that of
equality of the mean-square values of C(X) and its linear counterpart:

E[C2 (X)]"E (k
eq

X2/2)2. (27)

An attendant expression for the equivalent sti!ness is

k(6)
eq
"2JE[C2(X)]/E (X4). (28)

It appears instructive to turn now to the linearization in the damping element t (XQ ) in
equations (4).

4. LINEARIZATION OF DAMPING

Equation (14) gave a derivation of the linearized damping coe$cient c
eq

in a manner
di!erent from its conventional derivation. However, other expressions can be obtained. In
this context the energy dissipation function

D(XQ )"P
XQ

0

t (z) dz (29)

is instructive. This concept was utilized by Wang and Zhang [9] in their study. We will
derive their expression by other means. We form the residual e

D
due to the replacement of

the damping force c
eq

XQ . We demand the de"ciency

e
D
"D (XQ )!c

eq
XQ 2/2 (30)

between the energy dissipation functions representing the non-linear and linear systems to
be orthogonal to XQ 2,

Se
D
, XQ 2T"0. (31)

The associated expression for c
eq

reads

c(3)
eq
"2E[XQ 2D(XQ )]/E(XQ 4). (32)
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One can also demand equality of the mean-square values of the appropriate, linear and
non-linear, energy dissipation functions (see reference [14])

E[D2]"E[(c
eq

XQ 2/2)2]. (33)

From the condition we obtain

c(4)
eq
"2JE[D2]/E (XQ 4). (34)

One can also formally introduce the &&complementary energy dissipation function''

M(XQ )"XQ t (XQ )!D(XQ ). (35)

With this concept we can arrive at two criteria. One demands that the de"ciency to be
orthogonal to XQ 2, yielding:

e
M
"M(XQ )!c

eq
XQ 2/2, c(5)

eq
"2E[XQ 2M(XQ )]/E(XQ 4). (36, 37)

On the other hand, demand that

E[M2 (XQ )]"E[(c
eq

XQ 2/2)] (38)

leads to

c(6)
eq
"2JE[M2(XQ )]/E(XQ 4). (39)

Thus, we have six di!erent expressions for the equivalent spring constant and six di!erent
expressions for the equivalent damping coe$cients. Yet, these do not exhaust all possible
linearization avenues.

In the process of evaluating the expressions for the equivalent sti!ness and damping, it
may appear that we have overlooked the goal of the analysis itself! This evaluation of the
mathematical expectations involved in the expressions for k

eq
and c

eq
presupposes the

knowledge of the probability density involved, namely p
X
(x). Yet, had we known the density

we would not go through the trouble of utilizing the linearization technique, but would
directly evaluate the desired response quantities

E (X2)"P
=

~=

xp
X
(x) dx, E(XQ 2)"P

=

~=

xR 2p
X
Q (x) dx. (40)

Yet, we do not know p
X
(x) and p

X
Q (xR ). If so, the formulas for k

eq
and c

eq
may appear to be

void of sense. Indeed, to evaluate c
eq

we need to know the density, which is not known to us.
This situation is not entirely di!erent from the use of the Rayleigh's quotient in vibration
analysis. For the Bernoulli}Euler beams it reads

u2"
P

L

0

EI(d2=/dx2)2dx

P
L

0

o (x)A (x)=2(x) dx

, (41)

where u is the natural frequency to be determined, E (x) the modulus of elasticity, I(x) the
moment of inertia of the beam's cross-section, o (x) the material density, A(x) the
cross-sectional area, and= (x) the mode shape. As Professor V. V. Bolotin remarked during
the exposition of this subject, the Rayleigh's quotient maintains, in essence, that in order to
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obtain the natural frequency, one needs the knowledge of the mode shape; yet, if we were in
possession of the mode shape, we would not need the Rayleigh quotient, but obtain the
natural frequency from the governing di!erential equation itself,

d2

dx2 CE (x)I(x)
d2=(x)

dx2 D"o (x)A(x)u2=(x), (42)

as

u2"
d2

dx2 CE (x)I (x)
d2=(x)

dx2 DNo (x)A (x)=(x). (43)

The main idea by Rayleigh was to use not an exact, but an approximate expression for the
mode shape. We substitute the expression=I (x) that approximates the true (and unknown)
mode shape. The quotient in equation (41) yields an approximate expression for the natural
frequency.

An analogous idea is utilized to justify the expressions we obtained for the linearization
coe$cients. We approximate the true (and unknown) probability density p

X
(x) by density

pJ
X
(x) that contains some unknown parameter(s). Consider as an example an approximation

that has unspeci"ed parameters pJ
X

and pJ
X
Q , these quantities being mean-square deviations

of the approximating process and its derivative respectively. Mathematical expectation
involved in determination of the sti!ness and damping coe$cients become dependent upon
pJ
X

and pJ
X
Q . Thus,

k
eq
"k

eq
(pJ

X
), c

eq
"c

eq
(pJ

X
Q ). (44)

At this juncture we pretend we know k
eq

and c
eq

. These characterize the replacing linear
system governed by the di!erential equation

mXG#k
eq

(pJ
X
)X#c

eq
(pJ

X
Q )XQ "F(t) (45)

well studied in the random vibration literature. For example, if F (t) is a random process that
is stationary, in the wide sense, than the spectral analysis yields the mean-square responses.
If, for example, the excitation is the white noise, and mathematical expectation is zero, i.e.,
its spectral density is constant, so we get

E (X2)"
nS

0
c
eq
k
eq

, E (XQ 2 )"
nS

0
mc

eq

. (46)

Yet, E (X2) due to utilized approximating p
X
(x)+pJ

X
(x) equals pJ 2

X
, while, on the other hand

k
eq

is a function of pJ
X
. Likewise, E(XQ 2 ) equals pJ 2

XQ
, whereas c

eq
is a function of pJ

X
Q . Thus,

equations (45) and (46) can be rewritten as

pJ 2
X
"nS

0
/c

eq
k
eq

(pJ
X
), pJ 2

XQ
"nS

0
/mc

eq
(pJ

X
Q ), (47)

yielding equations for pJ
X

and pJ
X
Q . At this stage the approximate density is fully revealed, for

the control parameter is determined; likewise, our initial problem, which was more modest
than that of "nding the probability density, is solved, for E(X2) and E(XQ 2 ) are
approximated by pJ 2

X
and pJ 2

XQ
, respectively, and determined from equation (47).

5. CRITERIA BASED UPON APPROXIMATING PROBABILITY DENSITY AB INI¹IO

In previous derivations, we "rst postulated the criteria for determining the parameters
k
eq

and c
eq

, found their analytical expressions, and then made an approximation of the
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probability density that enters into these expressions. We assumed that the probability
densities of X and XQ depend upon pJ

X
and pJ

X
Q respectively. Presently, we will use the

assumption of the approximate probability density from the very start. The following
criteria appear to be relevant.

Minimum mean-square di!erence between the original and the replacing restoring forces
is the "rst criterion to be considered. We demand that [15, 18}20]:

d

dk
eq

E[u(X DpJ
X
)!k

eq
X]2"

d

dk
eq

ME[u2(X DpJ
X
)]

!2k
eq

E[Xu(X DpJ
X
)]#k2

eq
pJ 2
X
N"0. (48)

Equation (48) yields an equation for determining k(7)
eq

. Note that criterion (48) di!ers from
expression (1) for k(1)

eq
. In fact, the latter equation can be obtained from equation (48) if the

dependence of quantities E[u2(X DpJ
X
)] and E[Xu(X DpJ

X
)] upon k

eq
could be neglected.

Analogously, one can demand [15] that the mean-square di!erence between
appropriately evaluated mean-square di!erence of potential energies

E[(DP)2]"E[P(X DpJ
X
)!k

eq
X2/2]2 (49)

to be minimal:

d

dk
eq

E[(DP)2]"
d

dk
eq

ME[P2(X DpJ
X
)]

!k
eq

E[X2P(X DpJ
X
)]#k2

eq
E (X4)/4N"0, (50)

resulting in an equation for k(8)
eq

.
Again it should be stressed that this criterion di!ers from equation (22) since

E[P2(X DpJ
X
)] and E[X2P(X DpJ

X
)] depend upon pJ

X
. If one would neglect this dependence,

one would reduce the resulting expression for the k
eq

to equation (22).
In perfect analogy, we reproduce here a direct generalization of the complementary

energy criterion by Elishako! and Bert [13]. We form the mean-square di!erence between
the complementary energies, evaluated by using the approximating density

E[(DC)2]"E[C(X Dp
X
I )!k

eq
X2/2]2 (51)

and require it to be minimal with respect to the parameter k
eq

:

d

dk
eq

E[(DC)2]"
d

dk
eq

ME[C2 (X DpJ
X
)]

!k
eq

E[X2C(X DpJ
X
)]#k2

eq
E (X4 )/4N"0 (52)

leading to an evaluation of k(9)
eq

.
To complete our task we should provide formulas for the derivation of c

eq
. We form the

mean-square di!erence, between the original non-linear damping DF
D

forces:

E[(DF
D
)2]"E[t(XQ )!c

eq
XQ ]2. (53)
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Hereinafter, we will emphasize the dependence of the statistical moments appearing on the
right-hand side of equation (57); we demand E[(DF

D
)2] to attain a minimum:

d

dk
eq

ME[t2(XQ DpJ
X
Q )]!2c

eq
E[XQ t(XQ DpJ

X
Q )]#c2

eq
E (XQ 2)/4N"0 (54)

leading to the value of c(7)
eq

.
The requirement for the mean-square di!erence of di!erent energy dissipation functions

E[(DD)2]"E[D(XQ DpJ
X
Q )!c

eq
XQ 2/2]2 (55)

to attain a minimum value with respect to c
eq

yields the requirement

d

dc
eq

E[(DD)2]"
d

dc
eq

ME[D2 (XQ DpJ
X
Q )]

!c
eq

E[XQ 2D(XQ DpJ
X
Q )]#c2

eq
E (XQ 4)/4N"0, (56)

from which we obtain the value of c(8)
eq

.
Finally, utilizing a somewhat arti"cial criterion of the minimum mean-square di!erence

of the &&complementary energy dissipation function''

E[(DM(XQ ))2]"E[M(XQ DpJ
X
Q )!c

eq
XQ 2/2]2, (57)

we get the condition

d

dc
eq

E[(DM(XQ ))2]"
d

dc
eq

ME[M2(XQ DpJ
X
Q )]

!c
eq

E[XQ 2M(XQ DpJ
X
Q )]#c2

eq
E (XQ 4 )/4N"0 (58)

leading to the value of c(9)
eq

.

6. WHY DO WE NEED SO MANY CRITERIA?

We thus arrived at nine di!erent criteria for evaluating the equivalent sti!ness k
eq

and
nine di!erent conditions for evaluating the sti!ness coe$cient c

eq
. Since each criterion for

computing k
eq

can be combined with any criterion for calculating c
eq

, we conclude that we
arrive at 92"81 di!erent criteria for solving the non-linear stochastic problem at hand.
The multiplicity of the methods to arrive at the sought solution may appear to be alarming
in several respects.

The "rst question that begs itself to be asked is &&=hy do we need so many criteria?=hy not
use a single criteria?11 The reply to this question may be a question itself: &&=hy not?11 Indeed,
for solving linear deterministic problems there are a multiplicity of methods. For example,
for solving the linear eigenvalue problem one can resort to the methods of numerical
integration method, method of successive approximations, Rayleigh}Ritz method,
Bubnov}Galerkin method, Petrov}Galerkin method, "nite di!erence method, "nite
element method, etc. An even more direct connection exists between the problem at hand
and the failure criteria in the mechanics of solids. We have criteria of maximum stress,
maximum strain, St-Venant's criterion, Tresca criterion, Goldenblat}Kopnov criterion,
Tsai}Wu criterion etc. It appears that while the method of exact solution of non-linear
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stochastic di!erential equations is absent a tolerance may be exercised toward various
stochastic linearization criteria.

How to choose the stochastic linearization criterion from their multiplicity? Not unlike the
failure criteria, accumulation of the experience appears to be useful, for in various
circumstances di!erent criteria may prove to be advantageous over the others.

It appears instructive to classify 81 methods in two separate classes: like criteria and
unlike criteria. Like criteria are the ones with analogous reasoning both for evaluating k(a)

eq
and c(b)

eq
. For like criteria, we have a"b. Thus we have nine like criteria. For example

probabilistic orthogonality criteria of the restoring force di!erence and the damping force
di!erence constitute one pair of the like criteria with a"b"1. These are classical criteria.
The rest 72 criteria constitute the unlike ones: for example, criterion of probabilistic
orthogonality for the force di!erence for evaluating k

eq
, and the criterion of equal

mean-squares of the energy dissipation functions correspond to a"1, b"2. The
establishment of the class of problems in which any of the 80 non-classical criteria is
advantageous over the classical one appears to be of interest. Selective review of the method
is given in ref. [22].

7. WHAT TO DO WITH MULTIPLICITY OF CRITERIA?

A natural question arises:=hat to do with these criteria? Popov and Paltov [16], when
discussing two criteria suggested by Kazakov [2], came up with the recommendation to use
the arithmetic mean of result yielded by two methods, as a better approximation for the
mean-square response, to bracket the exact result. Bolotin [17] showed that such an
approach was not justi"ed, since in the particular problem, studied by him, the exact
solution was not bracked by the results obtained by two competitive criteria. We will refrain
therefore to recommend to solve every problem by 81 competitive means and then to
average the results. Rather, a study may be recommended to establish the regions when
a speci"c criterion can be advantageous, over the other criteria. It appears that one can
construct an arbitrary number of stochastic linearization criteria, for approximate solution
of stochastic response problems. In such circumstances, the importance of closed-form
benchmark solutions, on one hand, and fully numerical, Monte Carlo solutions, cannot be
overestimated.

REFERENCES

1. J. R. BOOTON 1953 Proceedings of the Symposium on Nonlinear Circuit Analysis. Politechnic
Institute of Brooklyn, 369}397. The analysis of nonlinear control system with random inputs.

2. I. E. KAZAKOV 1954 ¹rudy<oenno-<ozdushnoi Akademii imeni Prof. N. E. Zhukovskogo, 1}52. An
approximate method for the statistical investigation for nonlinear systems. (in Russian).

3. J. M. and M. J. COHEN 1960 ¹he Penguin Dictionary of Quotations, 401 Harmondsworth,
Middesex: Penguin Books.

4. H. YAMADA 1947 Report of the Research Institute of Fluid Engineering, Kyushu ;niversity 3,
29.

5. H. YAMADA 1948 Report of the Research Institute of Fluid Engineering 4, 27}42. Method of
investigation of laminar boundary-layer equations, 1 (in Japanese).

6. H. YAMADA 1950 Report of the Research Institute of Fluid Engineering 6, 87}98. A method of
approximate integration of the laminar boundary-layer equation (in Japanese).

7. H. FUJITA 1951 Memories of the College of Agriculture Kyoto Imperial ;niversity Vol. 52, 31. On
the problem of heat conduction at high temperature.

8. B. A. FINLAYSON 1972 ¹he Method of=eighted Residuals and <ariational Principles. New York:
Academic Press.



LETTERS TO THE EDITOR 559
9. C. WANG and X. T. ZHANG 1985 Proceeding of the International Conference on Nonlinear
Mechanics 959}964. Technique in nonlinear random vibration.

10. I. ELISHAKOFF and X. T. ZHANG 1992 Journal of Sound and <ibration 153, 370}375. An appraisal
of di!erent stochastic linearization criteria.

11. X. T. ZHANG, I. ELISHAKOFF and R. C. ZHANG 1991 Stochastic Structural Dynamics2New
¹heoretical Developments (Y. K. Lin and I. Elishako!, editors), 327}338. Berlin: Springer.
A stochastic linearization technique based on minimum mean-square deviation of the potential
energies.

12. A. A. MURAVYOV, T. L. TURNER, J. H. ROBINSON and S. A. RIZZI 1999 Paper 99-1376, 40th
AIAA/ASME/ASCE Structural Dynamics Conference, St. ¸ouis, 1489}1497. A new stochastic
equivalent linearization implementation for prediction of geometrically nonlinear vibrations.

13. I. ELISHAKOFF and C. W. BERT Application of Stochastic and Probability (R. L. Melchers and
M. G. Stewart, editors) 821}825. Rotterdam: A. A. Balkema. Complementary energy criterion
in nonlinear stochastic dynamics.

14. I. ELISHAKOFF 1995 Nonlinear Dynamics and Stochastic Mechanics (W. H. Kliemann and
Namachchivaya, editors), 259}281. Boca Raton: CRC Press. Some results in stochastic
linearization of nonlinear systems.

15. I. ELISHAKOFF and P. COLAJANNI 1997 Chaos, Solitons & Fractals 8, 1957}1972. Stochastic
linearization critically re-examined.

16. L. SOCHA and M. PAWLETA 1994 Machine Dynamics Problems 7, 49}161. Corrected equivalent
linearization of stochastic dynamic systems.

17. V. V. BOLOTIN 1971 Application of the Methods of the ¹heory of Probability and ¹he ¹heory of
Reliability to Analysis of Structures. Moscow: State Publishing House for Civil Engineering (in
Russian). [English translation: FTD-MT-24-771-73, Foreign Technology Division,
Wright-Patterson AFB, Ohio, 1974].

18. P. COLAJANNI and I. ELISHAKOFF 1998 Chaos, Solitons & Fractals 9, 479}491. A subtle error in
conventional stochastic linearization technique.

19. P. COLAJANNI and I. ELISHAKOFF 1998 Chaos, Solitons & Fractals 9, 1611}1623. A new look at
the stochastic linearization techniques.

20. I. ELISHAKOFF and E. COLAJANNI 1998 Journal of Sound and <ibration 210, 683}691. Booton's
problem re-examined.

21. E. P. POPOV and I. N. PALTOV 1960 Approximate Methods of Investigation of Nonlinear Automatic
System. Moscow: Fizmatgiz Publishers (in Russian).

22. I. ELISHAKOFF 2000 ¹he Shock and <ibration Digest 32, 179}188. Stochastic linearization
technique: A new interpretation and a selective review.


	1. INTRODUCTION
	2. BASIC EQUATIONS
	3. RE-DERIVATION OF ENERGY CRITERIA
	4. LINEARIZATION OF DAMPING
	5. CRITERIA BASED UPON APPROXIMATING PROBABILITY DENSITY AB INI¹IO
	6. WHY DO WE NEED SO MANY CRITERIA?
	7. WHAT TO DO WITH MULTIPLICITY OF CRITERIA?
	REFERENCES

